

Trends in occupational radiation exposure in nuclear fuel cycle facilities. An overview.

Ludovic VAILLANT

International Conference on Occupational Radiation Protection: Enhancing the Protection of Workers

1-5 December 2014

Vienna

Content

- Global overview of occupational exposures trends in nuclear facilities based on UNSCEAR latest data.
- Focus on Nuclear Power Plants based on data from the International System on Occupational Exposure (ISOE).
- Discussion.

CEDU

Perspectives & future challenges.

UNSCEAR 2008

- UNSCEAR 2008 Vol. 1 report provides estimates on workers' occupational exposures in various field of activities, including the use of atomic energy for electricity generation.
- Data on:
 - Uranium mining,
 - Uranium milling,
 - Enrichment,
 - Fuel fabrication,
 - Electricity generation,
 - Reprocessing.
- Including:
 - Collective exposure,
 - Number of monitored workers.

CEDU

Uranium mining UNSCEAR 2008

cepn

Uranium milling UNSCEAR 2008

CEDU

Enrichment UNSCEAR 2008

Fuel fabrication UNSCEAR 2008

Reactor Operation UNSCEAR 2008

Reprocessing UNSCEAR 2008

серп

CEDU

Overview - Collective exposures UNSCEAR 2008

General comment on UNSCEAR 2008

UNSCEAR 2008 data outline the following trends:

- A general trend in the decrease of the average individual exposure.
- Highest collective exposures associated with:
 - Uranium mining (a strong decrease is observed),
 - Reactor Operation.

CEDU

 Reactor Operation appears since the beginning of the 90ies to be the most important contributor to occupational collective exposure associated with the nuclear fuel cycle.

Electricity generation ISOE network

- The ISOE network <u>www.isoe-network.net</u> provides detailed information on occupational exposures of workers in NPP.
- These data help to analyse and detail the observed trends.

Electricity generation – Collective dose / TWh Data from the ISOE network

CEDU

Electricity generation Discussion

- A general decrease of occupational collective exposures:
 - For various design of NPPs,
 - For normalized collective exposures (in man.Sv per TWh-1).
- What is behind this trend?
 - Evolution of the radiation protection system with ICRP Pub. 60:
 - Individual dose limit from 50 to 20 mSv.year-1, and
 - ALARA as a key requirement and driving force for the management of occupational exposures.
 - Feedback experiences,
 - NPP design improvements,
 - Etc.

CEDU

Electricity generation ALARA in NPP (1)

Stakeholders involvement:

- Management,
- Workers,
- Authority.

Building capacities:

- Training and ALARA culture,
- Sharing experiences.

Electricity generation ALARA in NPP (2)

- Improvement of source term, 'If you decrease dose rate, then for the same task, you decrease dose':
 - Monitoring program (follow trends and detect deviations - dose rate, CZT, gamma camera, etc. -),
 - Remediation (chemical decontamination),
 - Co source term reduction plan,
 - Zinc injection,
 - Steam Generator Replacement, etc.

Electricity generation ALARA in NPP (3)

New techniques:

- Remote Monitoring System,
- Pool decontamination and cleaning,
- Filters and resins for radioactive effluent treatment,
- Etc.

CEDU

 In addition to the management of collective exposure and in agreement with ALARA principle (and equity value), focus on highest individual doses

CEDU

Perspectives and future challenges (1)

- Analysis of data from UNSCEAR and ISOE shows that collective and individual exposures have progressively decreased during the last decades.
- ALARA programs play a key role.
- Networking (IAEA, NEA, ISOE, IRPA, etc.) and experience sharing allow to 'still' improve (or at least maintain) our performances and are needed to face forthcoming challenges.

Perspectives and future challenges (2)

- Need to develop capabilities and skills in case of an emergency situation in order to reach ALARA objectives in such a context.
- Need to take into account (anticipate) evolutions of the RP system:
 - Lens of the eye,
 - New scientific evidences may lead to a review of the radiation detriment.

Perspectives and future challenges (3)

- Challenges for occupational exposures in NPP and other nuclear fuel cycle facilities :
 - New 'comers':
 - Feedback experiences to be taken into account, importance of networking activities,
 - Trained actors as a requirement to ensure that occupational exposures are ALARA (utility, national Authority, TSO, etc.).

Operation:

- Massive departures of highly qualified workers may lead to a loss of experience if not sufficiently anticipated (How to maintain an effective RP culture?),
- Increase of the operating life time of NPP and post-Fukushima related work leads to an increase of working time in controlled areas.

Perspectives and future challenges (4)

Challenges for occupational exposures in NPP and other nuclear fuel cycle facilities :

Dismantling:

- Need to develop an industrial approach of nuclear facilities dismantling taking into account:
 - Radiation protection contamination and alpha risk management -,
 - Industrial safety,
 - Radioactive waste management.

2015 ISOE International ALARA Symposium

Rio de Janeiro, Brazil, 26-28 May, 2015

www.isoe-network.net & IAEA webpage on ORPNET

Thank you for your attention